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Introduction

In our work on PLCrashReporter, we get to see a variety of interesting crashes in applica-
tions and libraries. One of the support services we offer is helping application developers
track down truly insidious bugs; we’ll often perform deep source and instruction-level
analysis of crash reports, the customer’s application code, and Apple’s system frame-
works in the process.

This is the first issue of “Tales From The Crash Mines” – what we intend to be an
intermittent series on the interesting bugs we’ve tracked down on iOS and Mac OS X.
To us, interesting bugs are ones that reveal themselves in non-obvious or novel ways,
and that developers are likely to see in their own crash reports. We hope that we can
provide some concrete guidance as to how to avoid these issues in your own code base,
as well as how to recognize when you’re seeing a similar issue in your crash reports, and
maybe some insight into how we analyze failures.

For our first bug, we’ve got a fun crasher from our friends at Unibox, who were
gracious enough to allow us to use their issue as an example in our series. Unibox is a
Mac OS X application, but our analysis applies equally to iOS – we’ll be sure to explain
any minor differences as we go.

If you’re looking for a fantastic e-mail client, be sure to give Unibox a try.

Ladies and gentlemen: the story you are about to hear is true. Only the code has
been changed to protect Unibox’s intellectual property rights. Any issues you find in
the example source code listings, class and method names, and crash reports are entirely
our fault, because we wrote all of the examples.

A Butterfly Flaps Its Wings

I’m sure everyone is familiar with the pop-sci definition of chaos theory – a butterfly
flaps its wings in Brazil, and sets off a tornado in Texas.

The idea isn’t that the butterfly powers the tornado, but rather, that a tiny change
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in the initial conditions of a deterministic nonlinear system can result in wildly different
large-scale outcomes.

The execution of software is nowhere near the complexity of weather systems (a good
thing for us!), but the basic idea still applies; there can exist a significant gap between
the bug that triggers a failure, and the actual visible outcome of that failure. What’s
more, the actual type of visible failure (and whether a failure even occurs at all) is highly
dependent on the initial conditions –including what threads were running, how far had
they progressed, when did a network server respond, and the initial data with which the
code was initialized.

This was the case with Unibox’s bug, and one of the reasons I found it interesting.
The folks at Unibox simply could not reproduce the bug locally. It only happened
semi-regularly. The actual point at which the software crashed varied, and it rarely
corresponded to an obvious line of source code. The types of crashes varied. The only
commonalities between the crash reports were:

• The crashes occured in the same area of the networking code.

• The failures all pointed to an object over-release, despite the use of ARC.

Given a bug that can’t be reproduced locally, crashes at different places, in different
ways, and may not even refer to any of your own code – how do you debug it?

This is where we turn back to our pop-sci chaos theory. Given an observed outcome
(crash reports), and a deterministic system (the processor and execution environment),
we need to figure out what initial conditions could lead to all the failures we saw.

To do so, our usual approach at Plausible Labs is to load up the binary in a disas-
sembler and work backwards from the crash, determining the full set of initial conditions
that could result in the failure. This is a simple process of elimination, where we discard
possible initial conditions by proving that they could not have triggered the crash.

In most cases, enough data exists in the collected crash reports to narrow the pos-
sibilities to a single set of initial conditions that could cause it – and thus, the bug
–without ever needing to actually run the code or reproduce the issue.

If we can’t narrow it down to a single bug, we instead perform more directed data
gathering to help eliminate whatever possibilities remain. The more data we gather, the
more we can narrow the number of initial conditions until we find the root cause.

This approach is the fastest way I’ve found to triage crash reports – and sometimes
the only way – as it requires no actual reproduction case, just a crash report. Think of it
as a brain-powered git bisect, leveraging your long-term memory and pattern recognition
to quickly rule out what initial conditions you can, and then evaluating what’s left over.

I also want to take a moment to emphasize the following point: for most bugs, you
don’t need to be able to read assembly to perform this type of crash analysis. While being
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able to perform static analysis at the assembly level makes it easier to more accurately
eliminate impossible conditions, it’s often possible to reach the same conclusions by
evaluating everything at the source code level. Sometimes you might need a bit more
data, but this still remains the best approach I know of to quickly reason about failure.

Now, with our pop-sci chaos theory in hand, let’s take a look at one of the crash
reports that the Unibox team provided, and determine what possible initial states could
result in the exhibited behavior. There are some fun twists and turns ahead.

The Crash Report – SIGBUS at 0x0

For the purposes of this article, we’ll be walking through a complete step-by-step root
cause analysis of a single crash report – a SIGBUS signal triggered in objc_autorelease
() , with a faulting address of 0x0 :

...

Unibox Crash Report

.

...
Exception Type: SIGBUS
Exception Codes: BUS_ADRERR at 0x0
...
Thread 17 Crashed:
0 libobjc.A.dylib 0x00007fff896392d2

objc_autorelease + 18
1 ExampleApp 0x0000000103fbf0f9

-[EXNetConnection execute:timeout:completionBlock:]
(EXNetConnection.m:89)

2 ExampleApp 0x0000000103fbeff7
-[EXNetConnection execute:completionBlock:] (EXNetConnection.m:77)

3 ExampleApp 0x0000000103fbfba7
-[EXNetConnection selectItem:] (EXNetConnection.m:163)

...
Thread 17 crashed with X86-64 Thread State:

rip: 0x00007fff896392d2 rbp: 0x0000000115846590 rsp:
0x0000000115846568 rax: 0xbadd30ac3ceabead

rbx: 0x0000600002a2ef20 rcx: 0x0000000000000001 rdx:
0x0000000115846468 rdi: 0x0000608001c4b0a0

rsi: 0x0000000000001a7a r8: 0x0000000000001fff r9:
0xffff9fffffb0267f r10: 0x000000010f8e47a0

r11: 0x0000000000000201 r12: 0x00007fff89622080 r13:
0x000060000263d040 r14: 0x0000000000000000

r15: 0x0000608002c692c0 rflags: 0x0000000000010246 cs:
0x000000000000002b fs: 0x0000000000000000

gs: 0x0000000011190000
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Initial Hypothesis

At a glance, we can make the following hypothesis about the initial state of the process
at the time objc_autorelease() was called:

• A SIGBUS with an address of 0x0 probably means we dereferenced a NULL pointer
(see Exploring iOS Crash Reports).

• The id objc_autorelease (id obj) function is equivalent to calling [
obj autorelease] , and like -autorelease , it ignores nil object values.1

If we’re crashing due to a NULL pointer in objc_autorelease , it’s probably
because the object’s pointer points to real memory, but the data is not actually a
valid object.

This gives us a place to start digging — a frame 0 hypothesis.

Examining Frame 0: Crash in objc autorelease()

..

Thread 17 Crashed:
0 libobjc.A.dylib 0x7fff896392d2 objc_autorelease + 18
...

We think we know what the crash was— a NULL dereference in objc_autorelease
() — but we haven’t proven anything. To actually prove that the crash was a NULL
dereference, we need to examine the implementation of objc_autorelease() , elim-
inating any impossible initial states until we’re left with (ideally) one state that could
be valid – such as our hypothesized NULL dereference.

We’ll start by examining the implementation of objc_autorelease() from
Apple’s published objc4-551.1 runtime sources. In reviewing the source code below,
be aware that Objective-C objects are implemented as C++ structs in the modern
Objective-C runtime; statements such as obj->isTaggedPointer() are C++
method calls, not calls to C function pointers:

1The id objc_autorelease (id obj) function was added with the introduction to ARC. Refer
to the clang documentation for details.
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..

id objc_autorelease (id obj) {
if (!obj || obj->isTaggedPointer())

goto out_slow;

if (((Class)obj->isa)->hasCustomRR())
return [obj autorelease];

return bypass_msgSend_autorelease(obj);

out_slow:
return obj;

}

It appears that objc_autorelease() will only crash dereferencing a NULL
pointer if obj->isa is NULL; if instead the obj argument is NULL, the function
immediately terminates, and obj->isa looks like the only other pointer dereferenced
in the function.

However, “likely” isn’t good enough. To provide proof, we need to look at the
actual objc_autorelease() implementation, and specifically, the actual crashing
instruction, at 0x7fff896392d2 objc_autorelease + 18 .

Dissassembling Frame 0

The x86-64 implementation of objc_autorelease follows; we’ll step through the
assembly listing in detail, so don’t worry if your x86-64 is rusty.2

..

; if (!obj || obj->isTaggedPointer())
; goto out_slow;
0x7fff896392c0 test rdi, rdi
0x7fff896392c3 je loc_out_slow
0x7fff896392c5 test dil, 1
0x7fff896392c9 je do_autorelease
; out_slow:
; return obj;
0x7fff896392cb loc_out_slow:
0x7fff896392cb mov rax, rdi
0x7fff896392ce ret
0x7fff896392cf do_autorelease:
...

The first pair of instructions test whether the obj argument is equal to nil, and if

2To get started with assembly-level analysis, I suggest Mike Ash’s articles on Object File Tools and
The Hopper Disassembler, as well as Gwynne Raskind’s Disassembling the Assembly, Parts 1, 2, and 3.
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so, we jump to loc_out_slow .3

The second pair of instructions test whether the obj argument is a tagged pointer4.
This is the inlined implementation of obj->isTaggedPointer . If obj is not a
tagged pointer, we jump to do_autorelease below. Otherwise, execution continues
at the next instruction (which just so happens to be loc_out_slow ). If you’re
wondering about the odd dil register, on x86-64, the dil register is just an alias for
the lower 8 bits of the rdi register.

Lastly, loc_out_slow copies the obj argument ( rdi ) into the return address
register ( rax ), and returns it to the caller. If we arrived here from the nil or a tagged
pointer test, the original obj argument value will be directly returned to the caller, and
objc_autorelease() will terminate. Since our crash occurred later in the function,
we’ve confirmed the obj argument was neither nil, nor a tagged pointer.

At this point, nothing has dereferenced the obj pointer, much less obj , and we
haven’t yet reached the instruction that crashed. Let’s move on.

..

; if (((Class)obj->isa)->hasCustomRR())
0x7fff896392cf mov rax, [rdi]
0x7fff896392d2 mov rax, [rax+32] ; <-- We crashed loading 8 ⤦
bytes from rax+32
... [elided remainder of function]

Here we arrive at the meat. The first mov instruction fetches the obj->isa
pointer5, successfully storing the value in the rax register.

The second mov instruction is the inlined implementation of hasCustomRR , and
is where we actually crashed attempting to load 8 bytes from rax+32 .

From our reading of the code, it’s clear the obj argument to objc_autorelease
() must have pointed to mapped, readable memory; otherwise, we never would have
been able to read obj->isa . The actual crash occurred one instruction later, while
dereferencing isa->data (ie, [rax+32] ) at 0x7fff896392d2 .

Given this proven order of events, we now know the memory pointed to by obj
was mapped and readable, but did not contain a valid isa pointer at the time

objc_autorelease() was called — or it became invalid during execution of the
function — as the crash occurred in attempting to read 8 bytes from isa->data .

Thus, we’ve proven part of our hypothesis:

3On Mac OS X x86-64 the rdi register is used for the first function argument. For more details,
refer to Apple’s Mac OS X and iOS calling convention documentation.

4Tagged pointers are covered in depth by Bavarious’s Tagged Pointers in Lion and Mike Ash’s Lets
Build Tagged Pointers

5See Intro to the Objective-C Runtime for an explanation of the Objective-C isa pointer
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• The object passed to objc_autorelease() was a non-NULL pointer to
mapped memory; otherwise, execution would have never reached the point at
which it crashed.

• At the time of the crash, the object pointer did not point to a valid Objective-C
object, as objc_autorelease() crashed dereferencing a corrupt isa pointer
value within the object.

This leaves us with one remaining unproven item from our original hypothesis:
that the dereferenced isa was NULL, as was implied by Exception Codes:
BUS_ADRERR at 0x0 in our crash report.

There’s just one problem; take a look at the crashing instruction again:

..

0x7fff896392d2 mov rax, [rax+32] ; <-- We crashed loading 8 ⤦
bytes from rax+32

According to our crash report, we received a SIGBUS , with a faulting memory
address of 0x0 . There’s no way the faulting address was 0x0 , as the code always
dereferences the value of rax , plus 32. Compounding matters, if we look at the value
of rax as reported in the crash report, it’s nowhere near 0x0 :

..

rax: 0xbadd30ac3ceabead

What gives? Did the crash reporter generate an invalid crash report?

Invalid Crash Report? No, just an invalid assumption

The answer is no – the crash report is fine. The si_addr value reported by the
kernel was 0x0, the actual faulting address was not 0x0, and there’s a good reason for
all of that: x86-64 canonical form addresses. On all current implementations of the
x86-64 instruction set, only 48-bits of the full 64-bit address range is available for use.
Additionally, the AMD64 and Intel specifications require that addresses be expressed in
canonical form: bits 48-63 of an address must be copies of bit 47. If bit 47 is 0, so must
be bits 48-63, and vise versa. If you’re curious about the details, refer to section 3.3.7.1
of Intel’s 64 and IA-32 Architectures Software Developer’s Manual: Volume 1.

Take another look at rax ’s value. 0xbadd30ac3ceabead is not in canonical
form. A memory reference to a non-canonical address triggers a general protection fault,
and on x86, a general protection fault does not supply the faulting address. If you want
to know the actual faulting address, you have to examine register state and the machine
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code to determine what the software was attempting to load — which is exactly what
we just did, manually. The kernel could try to do this automatically to provide a valid
si_addr , but it doesn’t, and that’s something POSIX explicitly permits::

For some implementations, the value of si addr may be inaccurate.

Performing these sorts of advanced instruction-level heuristics automatically is on
the PLCrashReporter roadmap, but in the mean time, how would you even find the
answer for a discrepancy like this if you weren’t already familiar with kernel-level x86-64
fault handling?

Digging Deeper

If you find something confounding in an area you’re unfamiliar – like a discrepancy
between what the crash report contains, and what the code says – then start digging to
figure out how it could possibly happen. It’s generally a good idea to work downwards
from high-level to low-level, first by validating your own assumptions, and then the
assumptions of the implementation you rely on, and so on down the technology stack
until you find your answer:

1. Consult the system documentation, such as the man pages for signal(3) and
sigaction(2) , to determine what behavioral guarantees are actually made by
the system. Your assumptions regarding a specific behavior may not match what
is actually documented.

2. Review the relevant standards, such as the POSIX specification, to determine what
behavioral guarantees are expected to exist, and to help resolve any ambiguities
in the system documentation.

3. Review the actual implementation to determine how those behavioral guarantees
are met. In a case like this, books such as Amit Singh’s http://osxbook.com/
provide a great starting point. Apple continues to provide the source code for the
Mac OS X kernel at http://www.opensource.apple.com/, and the Mac OS
X implementation tends to match the iOS kernel.

4. Consult the architecture reference manuals for the underlying platform(s) – freely
available from both ARM and Intel – to confirm the behavior that you’re seeing
exhibited.

In this case, I actually resolved this issue exactly as described above. I was already
familiar with the canonical addressing rules, but I didn’t make the connection until I
worked my way through the full stack and arrived at the Intel architecture manual.

Lastly, if you’ve dug deeply to no avail, ask. Seriously. Resources like the PLCrashRe-
porter mailing list and IRC channel are here to help.
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Refining our Hypothesis

We’ve proven two of the initial statements in our hypothesis, and we’ve discarded the
third - that the isa was NULL, triggering a NULL dereference. That’s OK — it wasn’t
imperative to our analysis, and we now know for certain:

• The object pointer passed to objc_autorelease() was a valid pointer to
readable memory.

• At the time of the crash, the object pointer did not point to a valid Objective-C
object.

Now that we know what the objc_autorelease() failure was — it was passed a
pointer to mapped memory that wasn’t an object — let’s figure out how that happened.

Examining Frame 1

..

Thread 17 Crashed:
0 libobjc.A.dylib 0x7fff896392d2 objc_autorelease + 18
1 ExampleApp 0x000103fbf0f9 -[EXNetConnection ⤦
execute:timeout:completionBlock:] (EXNetConnection.m:89)
...

We’ve established that a bad object pointer was passed to objc_autorelease()
. Since our backtrace shows that the next frame is -[EXNetConnection execute:
timeout:completionBlock:] , it’s probably the function that called objc_autorelease
() with an invalid argument. We say “probably” quite intentionally: A crash report
isn’t a time machine; it’s a snapshot of the process as it was when the crash occurred,
from which the backtrace is reconstructed. We can’t take any unproven inferences at
face value.

By now, some readers have likely thought of running the code with NSZombie
enabled to track down the bad object; remember that there is no reliable reproduction
case, and enabling NSZombie was tried long before the bug landed on our desks.

Instead, let’s take a look at the -[EXNetConnection execute:timeout:completionBlock
:] implementation and see if anything stands out:
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..

- (EXResponse *) execute: (NSString *) command timeout: ⤦
(NSTimeInterval) timeout completionBlock: (EXResponseBlock)
{

return [self execute: command timeout: timeout completionBlock: ⤦
block updateCallback: nil]; // <-- Stack trace claims that we ⤦
called objc_autorelease() here, at line #89

}

Unfortunately, this is too ambiguous to be useful — the call to objc_autorelease
() was inserted by ARC, but we don’t know where, or even what object ARC was
attempting to autorelease. We could guess — knowing what we do about ARC, it
almost certainly inserted autorelease code for the return value. However, we can’t prove
anything with this level of ambiguity, and you might be surprised what we find out when
we start digging. Let’s look at the actual assembly code for -[EXNetConnection
execute:timeout:completionBlock] :
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..

0x103fbf0ba -[EXNetConnection execute:timeout:completionBlock:] proc ⤦
near
0x103fbf0ba var_20 = qword ptr -20h
0x103fbf0ba push rbp
0x103fbf0bb mov rbp, rsp
0x103fbf0be push r15
0x103fbf0c0 push r14
0x103fbf0c2 push rbx
0x103fbf0c3 push rax
0x103fbf0c4 mov r14, rcx
0x103fbf0c7 movsd [rbp+var_20], xmm0
0x103fbf0cc mov r15, rdi
0x103fbf0cf mov rdi, rdx
0x103fbf0d2 call cs:_objc_retain_ptr
0x103fbf0d8 mov rbx, rax
0x103fbf0db mov rsi, ⤦
cs:selRef_execute_timeout_completionBlock_updateCallback_
0x103fbf0e2 mov rdi, r15
0x103fbf0e5 mov rdx, rbx
0x103fbf0e8 movsd xmm0, [rbp+var_20]
0x103fbf0ed mov rcx, r14
0x103fbf0f0 xor r8d, r8d
; This is the instruction that supposedly called objc_autorelease(),
; but it’s actually a call to [self ⤦
execute:timeout:completionBlock:updateCallback:]
0x103fbf0f3 call cs:_objc_msgSend_ptr
; The return address in our crash report
0x103fbf0f9 mov r14, rax
0x103fbf0fc mov rdi, rbx
0x103fbf0ff call cs:_objc_release_ptr
0x103fbf105 mov rdi, r14
0x103fbf108 call _objc_retainAutoreleasedReturnValue
0x103fbf10d mov rdi, rax
0x103fbf110 add rsp, 8
0x103fbf114 pop rbx
0x103fbf115 pop r14
0x103fbf117 pop r15
0x103fbf119 pop rbp
0x103fbf11a jmp _objc_autoreleaseReturnValue
0x103fbf11a -[EXNetConnection execute:timeout:completionBlock:] endp

There’s no call to objc_autorelease() made at address 0x103fbf0f3 , or
anywhere else in the method! Instead, the address listed in the crash report corresponds
to a call to [self execute:timeout:completionBlock:updateCallback:]
(via objc_msgSend ). What’s happening here?

To find out, let’s take a look at the assembly for the method that is being called, -[
EXNetConnection execute:timeout:completionBlock:updateCallback:]
. Specifically, we want to look at the function epilogue ARC emitted:
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..

...[snipped everything but the final two instructions]...
0x103FBF3A3 pop rbp
; Tail call to objc_autoreleaseReturnValue()
0x103FBF3A4 jmp _objc_autoreleaseReturnValue

Here’s our answer. When -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] returns to it’s caller, it does so via what’s known as a tail call
to objc_autoreleaseReturnValue()

A tail call is a function (or method) call that is performed as a final action within a
function; the function pops its stack frame (or never allocates one), and then branches
directly to another function. The tail-calling function’s stack frame is gone – there is
nothing for a crash reporter to include in the backtrace. This use of tail calls is an opti-
mization strategy; by letting objc_autoreleaseReturnValue return directly upon
completion, we eliminate additional stack cleanup that would otherwise be performed
by every ARC-generated function returning an autoreleased value.

By investigating the assembly in question, we were able to determine the actual
calling path:

• The only way for objc_autorelease() to appear in the backtrace at that
location was via a tail-call issued by -[EXNetConnection execute:timeout
:completionBlock:updateCallback:] .

• The only tail call issued by -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] is to objc_autorelease() (via objc_autoreleaseReturnValue
() ).

• -[EXNetConnection execute:timeout:completionBlock:updateCallback
:] passes its return value to ‘ objc_autoreleaseReturnValue() .

This is why we couldn’t reason accurately about this bug from just the source code
or the crash report; there were two intermediate calls invisible in the backtrace:

..

Thread 17 Crashed:
0 libobjc.A.dylib 0x7fff896392d2 objc_autorelease + 18

* libobjc.A.dylib 0x7fff896252a9 objc_autoreleaseReturnValue + 47

* ExampleApp 0x000103fbf11a -[EXNetConnection ⤦
execute:timeout:completionBlock:updateCallback:] (NetConnection.m:106)
1 ExampleApp 0x000103fbf0f9 -[EXNetConnection ⤦
execute:timeout:completionBlock:] (NetConnection.m:89)
...
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We this information information in hand, we now know who called objc_autorelease
() , and with what value. We can add this item to our list of proven initial conditions:

• New: The invalid argument passed to objc_autorelease() was -[EXNetConnection
execute:timeout:completionBlock:updateCallback:] ’s return value.

• The argument passed to objc_autorelease() was a valid pointer to mapped
memory.

• At the time of the crash, the argument passed to objc_autorelease() did
not point to a valid Objective-C object.

We’re nearly to the end now.

Examining Frame 1.1

..

Thread 17 Crashed:
0 libobjc.A.dylib 0x7fff896392d2 objc_autorelease + 18

* libobjc.A.dylib 0x7fff896252a9 objc_autoreleaseReturnValue + 47

* ExampleApp 0x000103fbf11a -[EXNetConnection ⤦
execute:timeout:completionBlock:updateCallback:] (NetConnection.m:106)
1 ExampleApp 0x000103fbf0f9 -[EXNetConnection ⤦
execute:timeout:completionBlock:] (NetConnection.m:89)
...

Now that we know -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] returned an invalid object, causing the crash in objc_autorelease
() , the only thing left is to figure out why the object was invalid.

Let’s try taking a look at the Objective-C implementation of -[EXNetConnection
execute:timeout:completionBlock:updateCallback:] :
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..

- (EXResponse *) execute: (NSString *) command timeout: ⤦
(NSTimeInterval) timeout completionBlock: (EXResponseBlock) block ⤦
updateCallback: (EXUpdateBlock) updateCallback
{

EXRequest *request = [[EXRequest alloc] initWithCommand: command ⤦
timeout: timeout completionBlock: block updateCallback: ⤦
updateCallback];
EXRequestHandler *requestHandler = [[EXRequestHandler alloc] ⤦
initWithRequest: request];
[self.requestExecutor executeRequest: requestHandler]; // ⤦
Executes synchronously, on a background thread.
return requestHandler.response;

}

Now we’re cooking with gas.

We already know that our crash is caused by an invalid return value, and -[
EXNetConnection execute:timeout:completionBlock:updateCallback:]
returns in only one place, at the end of the method:

..

return requestHandler.response;

This code fetches the requestHandler.response property value and returns
it.

ARC rules guarantee that the requestHandler instance itself is valid: we created
it, we hold a live reference to it, and it should remain valid. For this code to fail in the
way we’re seeing, there exist two likely possibilities:

A) The EXResponse property value returned by requestHandler.response
was invalid at the time it was accessed.

B) The EXResponse value returned by requestHandler.response somehow
concurrently became invalid after it was fetched, but before ARC passed it to objc_autoreleaseReturnValue
() on return.

Let’s take a look at the assembly for -[EXNetConnection execute:timeout
:completionBlock:updateCallback:] and try to narrow down this list to one.

Disassembling Frame 1

The x86-64 implementation of -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] follows; once again, we’ll step through the assembly listing in
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detail. We’ll also skip unrelated instructions, focusing only on the relevant lifetime of
the requestHandler and requestHandler.response instances:

..

; return requestHandler.response
0x103FBF36D mov rsi, cs:selRef_response
0x103FBF374 mov rdi, r13 ; requestHandler handler instance
0x103FBF377 call r12 ; _objc_msgSend
0x103FBF37A mov r14, rax
...
0x103FBF383 mov rdi, r14
0x103FBF386 call _objc_retainAutoreleasedReturnValue

The first four instructions fetch the requestHandler.response property via
objc_msgSend(requestHandler, @selector(response)) and store the re-
turned EXResponse * result in the r14 register. The fact that this code executed
successfully implies that requestHandler was valid at the time it was executed.

The last two instructions move the returned response value into the first argument
register ( rdi ), and then issue a call to objc_retainAutoreleasedReturnValue
(response) is called. This call will either retain the response value, or will skip
the retain if requestHandler.response transferred its ownership to our method6 –
determining which one of these occurred may allow us to establish when the EXResponse
value became invalid.

..

; return requestHandler.response
...
0x103FBF383 mov rdi, r14 ; response is in r14
0x103FBF3A4 jmp _objc_autoreleaseReturnValue

The jmp instruction occurs at the very end of the -[EXNetConnection
execute:timeout:completionBlock:updateCallback:] method; this is the
tail-call to objc_autoreleaseReturnValue(response) that crashed.

The response property is fetched, passed to objc_retainAutoreleasedReturnValue
() , and then finally returned via a call to objc_autoreleaseReturnValue() .

6ARC applies runtime heuristics on the caller’s instructions to determine whether it actually needs to
autorelease a value prior to return, or instead, can simply hand the current reference to the caller. This
is done as an optimization, and if you’re interested in why and and how, I suggest starting with Jonathan
Rentzsch’s ARC’s Fast Autorelease, and Mike’s Friday Q&A on Automatic Reference Counting.
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The Response Object’s Lifetime

It is notable that the call to objc_retainAutoreleasedReturnValue() did not
crash, but the later call to objc_autoreleaseReturnValue did. We determined
during our analysis of frame 0 that the crash was caused by an invalid isa pointer,
and we can use this information to narrow our current set of hypotheses.

If objc_retainAutoreleasedReturnValue() accessed the response ob-
ject’s isa and did not crash, then we know that the response object became invalid
concurrently to the execution of the method, after it was passed to objc_retainAutoreleasedReturnValue
() , but before it was handed to objc_autoreleaseReturnValue() . If we can
prove this occurred, we’ll know that we’re probably dealing with a threading related race
condition.

Let’s take a look at the implementation of objc_retainAutoreleasedReturnValue
() from Apple’s published objc4-551.1 runtime sources, and see if we can determine
whether it dereferenced the object’s isa :

..

id objc_retainAutoreleasedReturnValue (id obj) {
#if SUPPORT_RETURN_AUTORELEASE

if (obj == tls_get_direct(AUTORELEASE_POOL_RECLAIM_KEY)) {
tls_set_direct(AUTORELEASE_POOL_RECLAIM_KEY, 0);
return obj;

}
#endif

return objc_retain(obj);
}

This code is short, but a little tricky. On x86-64 and ARM, where SUPPORT_RETURN_AUTORELEASE
is enabled, ARC uses thread-local storage and runtime introspection of return addresses

to elide calls to objc_retain() and objc_autorelease() , if ARC can confirm
that both the callee and caller support this behavior.6 This is an optimization strategy
that allows code compiled with ARC to return ownership of an object directly to its
caller without the overhead of using the autorelease pool.

On the caller-side, thread-local storage is used to determine whether the callee
returned direct ownership of the object. This is what you’re seeing in the imple-
mentation of objc_retainAutoreleasedReturnValue() – if the per-thread
AUTORELEASE_POOL_RECLAIM_KEY value is set, and is equal to the returned object’s
pointer value, then the caller already has a reference, and objc_retain() won’t be
called.

If AUTORELEASE_POOL_RECLAIM_KEY was not set by the requestHandler
.response property getter, we’ll know that objc_retain(obj) was called. If
we review the implementation of objc_retain() , we can see that it does derefer-
ence objc->isa when passed a non-NULL, non-tagged pointer, as is the case for our
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response value:

..

id objc_retain(id obj) {
if (!obj || obj->isTaggedPointer()) {

goto out_slow;
}
if (((Class)obj->isa)->hasCustomRR()) {

...
}
...
return obj;

}

Thus, if we can prove that objc_retain() was called, we’ll have proven that the
memory pointed to by the response return value was a valid object at the time of the
call, as otherwise the call would have crashed. If that is true, then we’ll have narrowed our
two hypotheses down to a single provable initial condition: that the EXResponse value
returned by requestHandler.response somehow concurrently became invalid after
it was fetched, but before ARC passed it to objc_autoreleaseReturnValue() on
return.

To prove this, we need to know whether AUTORELEASE_POOL_RECLAIM_KEY was
set by the requestHandler.response property getter. If it was not set, then
objc_retainAutoreleasedReturnValue() successfully called objc_retain
() on the response object. The easiest way to determine this is to look at the the
EXRequestHandler.request property getter implementation:

..

0x103FC3DF2 -[EXRequestHandler response] proc
; Standard function prologue
; Set up the stack frame
0x103FC3DF2 push rbp
0x103FC3DF3 mov rbp, rsp

; Fetch the offset to the response instance variable
0x103FC3DF6 mov rax, cs:_OBJC_IVAR_$_EXRequestHandler_response

; Load the response instance variable’s pointer value
; from self+ivaroffset, and place the result
; in the return address register.
0x103FC3DFD mov rax, [rdi+rax]

; Standard function epilogue
; Restore the frame pointer and return
0x103FC3E01 pop rbp
0x103FC3E02 retn
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There is no code that sets a thread-local value, and there are no calls out to any other
functions that could – therefore, we know for certain that objc_retainAutoreleasedReturnValue
() successfully called objc_retain() on the response , and that the response
value became invalid after it was returned by the property getter.

We’ve also discovered something very interesting: -[EXRequestHandler response
] directly returns a borrowed reference to its backing instance variable. This is the
standard behavior for synthesized non-atomic properties, and indeed, if we look at
the property declaration, that’s exactly what we find:

..

@property (nonatomic, readonly, strong) EXResponse *response;

If the response property was concurrently set on another thread, the underly-
ing value could be deallocated prior to our call to objc_retain() . While we’ve
proven that the response->isa pointer pointed at readable memory at the time
objc_retain() was called, we haven’t proven that the object was actually alive; if
we call objc_retain() on a deallocated object, the behavior is undefined, and not
crashing is just one possible undefined behavior.

This means we now have two new items to add to our list of proven initial conditions:

• New: The EXResponse value returned by requestHandler.response was
returned as a borrowed reference, and without external locking, a race condition
exists between fetching and setting the value.

• New: The requestHandler.response became invalid after it was fetched,
but before it was returned by -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] .

• The invalid argument passed to objc_autorelease() was -[EXNetConnection
execute:timeout:completionBlock:updateCallback:] ’s return value.

• The argument passed to objc_autorelease() was a valid pointer to mapped
memory.

• At the time of the crash, the argument passed to objc_autorelease() did
not point to a valid Objective-C object.

We also have a new – and likely final – hypothesis: If no external locking is per-
formed around setting of the requestHandler.response value, and the value
is set concurrently to being read by -[EXNetConnection execute:timeout:
completionBlock:updateCallback:] , the response object may be deallocated
out from under the method, and ultimately trigger a crash in objc_autorelease()
. Compared to the rest of our analysis, proving this final one is easy.
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A quick project text search returned two methods that set the response property,
without any locking: one set the property when a server response had been returned, and
the other set the property if a connection error occurred. When a valid response was re-
turned, the code in -[EXNetConnection execute:timeout:completionBlock
:updateCallback:] immediately attempted to read the response property.

If it so happened that the server returned a valid response, and then immedi-
ately thereafter a connection error occurred, the property would be set twice in suc-
cession, resulting in the race condition we hypothesized, with the response value
being deallocated out from under our -[EXNetConnection execute:timeout:
completionBlock:updateCallback:]] .

The fix is simple enough, and Unibox has already rolled it out in a beta release. The
race condition can be prevented by synchronizing updates to the response property
– if a response has already been set, then a connection error should not modify the
property value, and there’s no risk of an unexpected deallocation.

Objective-C also supports the atomic property flag, which provides atomic get/set
semantics: you will always receive a valid reference to the underlying property, even if it’s
concurrently being set by another thread. While use of an atomic property would have
prevented the crash, it would have also masked the underlying bug – having received
a valid server response, the connection failure was unimportant, and should not have
overwritten the response property.

Conclusion

This has been a deep dive, and I hope that we’ve presented some useful methodologies
that you can use to analyze complex or difficult-to-reproduce issues in your own code.
Even if you’re not fluent in assembly, leveraging this deductive approach allows you to
break many complex and confounding crashes into approachable, provable hypotheses.

If you are fluent in assembly, I hope we’ve demonstrated just how deeply it’s possible
to dive on a difficult-to-reproduce issue. We performed all of this analysis post-mortem,
with only a crash report and no reproduction case – we never even actually ran the
application in question.

In future issues, we’ll address some of the tools we used in this analysis, including
Hopper and IDA Pro. If you have a particular crash-related topic you’d like to see
covered, please send it in.

If you’re facing your own particularly insidious bug, or require deeper insight into
the crash reporting process, we offer commercial support services as part of our work
on the open-source PLCrashReporter project. In exchange for our helping to solve your
crashes, you help fund ongoing development to make PLCrashReporter even better!
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